본문 바로가기
반응형

Python81

[Project Euler 14] 백만 이하로 시작하는 우박수 중 가장 긴 과정을 거치는 것은? 양의 정수 n에 대하여, 다음과 같은 계산 과정을 반복하기로 합니다. n → n / 2 (n이 짝수일 때) n → 3 n + 1 (n이 홀수일 때) 13에 대하여 위의 규칙을 적용해보면 아래처럼 10번의 과정을 통해 1이 됩니다. 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 아직 증명은 되지 않았지만, 이런 과정을 거치면 어떤 수로 시작해도 마지막에는 1로 끝나리라 생각됩니다. (역주: 이것은 콜라츠 추측 Collatz Conjecture이라고 하며, 이런 수들을 우박수 hailstone sequence라 부르기도 합니다) 그러면, 백만(1,000,000) 이하의 수로 시작했을 때 1까지 도달하는데 가장 긴 과정을 거치는 숫자는 얼마입니까? 참고: 계산 과정 도중에는 숫자.. 2016. 3. 1.
[Project Euler 13] 50자리 숫자 100개를 더한 값의 첫 10자리 구하기 아래에 50자리 숫자가 100개 있습니다. 이것을 모두 더한 값의 첫 10자리는 얼마입니까? 37107287533902102798797998220837590246510135740250 46376937677490009712648124896970078050417018260538 74324986199524741059474233309513058123726617309629 9194221336357416157252243056330181107240615490825....아 너무 길다. 생략 2016. 3. 1.
[Project Euler 12] 500개 이상의 약수를 갖는 가장 작은 삼각수는? 1부터 n까지의 자연수를 차례로 더하여 구해진 값을 삼각수라고 합니다. 예를 들어 7번째 삼각수는 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28이 됩니다. 이런 식으로 삼각수를 구해 나가면 다음과 같습니다. 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... 이 삼각수들의 약수를 구해봅시다. 1: 1 3: 1, 3 6: 1, 2, 3, 6 10: 1, 2, 5, 10 15: 1, 3, 5, 15 21: 1, 3, 7, 21 28: 1, 2, 4, 7, 14, 28 위에서 보듯이, 5개 이상의 약수를 갖는 첫번째 삼각수는 28입니다. 그러면 500개 이상의 약수를 갖는 가장 작은 삼각수는 얼마입니까? 2016. 3. 1.
[Project Euler 11] 20×20 격자에서 연속된 네 숫자의 곱 중 최대값 아래와 같은 20×20 격자가 있습니다. 08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00 81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65 52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91 22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80 24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50 32 98 81 28 64 .. 2016. 3. 1.
반응형