[Project Euler 39] 가장 많은 직각삼각형이 만들어지는 둘레(≤ 1000)의 길이는?
세 변의 길이가 모두 자연수 {a, b, c}인 직각삼각형의 둘레를 p 로 둘 때, p = 120 을 만족하는 직각삼각형은 아래와 같이 세 개가 있습니다. {20, 48, 52}, {24, 45, 51}, {30, 40, 50} 1000 이하의 둘레 p에 대해서, 직각삼각형이 가장 많이 만들어지는 p의 값은 얼마입니까? 피타고라스 정의를 이용하는 문제.일단 수도코드 #1차) 101.58초(왓더...)#2차) 24.49초. a, b for loop를 전부 도는 대신 p/2로 변경#3차) 23.42초. math.ceil() 대신 round를 씀. 다른 것도 math.sqrt()를 써봤는데 안 쓰는 게 더 빠른 듯하다.#4차) 12.57초. 여기서부터는 로직이 아니라 수학(이걸 수학이라 부를 수 있다면.)이 ..
2016. 5. 5.
[Project Euler 38] 어떤 수에 (1, 2, ... )를 곱해서 이어붙여 얻을 수 있는 가장 큰 1 ~ 9 팬디지털 숫자
숫자 192에 1, 2, 3을 각각 곱합니다. 192 × 1 = 192 192 × 2 = 384 192 × 3 = 576 곱한 결과를 모두 이어보면 192384576 이고, 이것은 1 ~ 9 팬디지털(pandigital)인 숫자입니다. 이런 과정을 편의상 '곱해서 이어붙이기'라고 부르기로 합니다. 같은 식으로 9와 (1, 2, 3, 4, 5)를 곱해서 이어붙이면 918273645 라는 1 ~ 9 팬디지털 숫자를 얻습니다. 어떤 정수와 (1, 2, ... , n)을 곱해서 이어붙였을 때 얻을 수 있는 가장 큰 아홉자리의 1 ~ 9 팬디지털 숫자는 무엇입니까? (단 n > 1) 이 문제를 풀려고 미뤄뒀던 32번 팬디지털 문제를 풀었다. 예전에는 끙끙거리면서 결국 못 풀었는데 요즘 그래도 늘고 있는지 둘 다 ..
2016. 5. 4.