[Project Euler 37] 왼쪽이나 오른쪽에서 한자리씩 없애가도 여전히 소수인 수의 합은?
소수 3797에는 왼쪽부터 자리수를 하나씩 없애거나 (3797, 797, 97, 7) 오른쪽부터 없애도 (3797, 379, 37, 3) 모두 소수가 되는 성질이 있습니다.이런 성질을 가진 소수는 단 11개만이 존재합니다. 이것을 모두 찾아서 합을 구하세요.(참고: 2, 3, 5, 7은 제외합니다) 이번엔 문제가 간단해 보여서 수도 코드를 짜지 않았다.소수가 나왔으므로 역시나 primesieve 모듈을 사용했다.처음엔 아래 적어놓은 조건대로 for loop를 돌릴까 했으나, primesieve가 훨씬 편해서... 아래는 테스트코드
2016. 4. 29.
[Project Euler 35] 백만 이하인 circular prime 개수 구하기
소수 중에서 각 자리의 숫자들을 순환시켜도 여전히 소수인 것을 circular prime이라고 합니다. 예를 들어 197은 971, 719가 모두 소수이므로 여기에 해당합니다.이런 소수는 100 밑으로 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97 처럼 13개가 있습니다. 그러면 1,000,000 밑으로는 모두 몇 개나 있을까요? 3.8초 정도가 걸렸다.이번 문제도 꽤나 재밌었다.처음엔 순환이 아니라, 순열로 착각해서 itertools 모듈의 permutations 함수를 썼었다.삽질 잠깐 하다가, deque로 만들어 그 길이만큼 rotate() 시켰다.(deque는 처음 써봤다!) 신기하게도(?) primesieve 모듈에 소수 판별 함수가 없어서, 해당 num을 ..
2016. 4. 23.